THE TECHNOLOGY BEHIND BAR CODES

 Part A

 Part A}

Theo Pavlidis
© 2011
E-mail: t.pavlidis@ieee.org
Web site: www.theopavlidis.com

The Modern Deity of Commerce!

Pros and Cons of Bar Codes

- Bar codes make store check out easier.
- Bar codes hide the price.
- When they were first introduced some consumer advocates were asking for markings that could be read by both machines and people.

Examples of Bar Codes

Bar code labels (symbols) contain both computer readable and human readable information. But the information displayed is only a key to a database. Price is included only rarely (second example).

Pros and Cons for a Key

- Prices of items can be updated easily (every few hours in places with rampant inflation).
- Price displayed with the item need not correspond to the price in the database. (This is often the case with "sale" prices.)
- However there is a paper trail!

How Bar Codes Work

(and why were designed that way)

- Information is encoded in the relative widths of the dark and light stripes.
- Computers are good at precise measurements and numerical
calculations. They are not good at figuring out shapes.
- People are the opposite: Good at shapes, bad in measurements.

Web Resources

- http://www.lintech.org/compper/06BARCD.pdf

Some Specifics

- UPC (Universal Product Code): It was introduced around 1970 and it is used mainly in supermarkets.
- It encodes the ten digits, each one in two bars and two spaces.
- If we use as unit the narrowest element (bar or space), the sum of the widths is equal to 7.

Examples of UPC

Examples of Encoding

- Kleenex $\rightarrow 36000$
- 85 3-ply $8.2^{\prime \prime}$ by $8.4^{\prime \prime} \rightarrow 26085$
- 12 pack of above $\rightarrow 22333$
- 110 2-ply $8.2^{\prime \prime}$ by $8.4^{\prime \prime} \rightarrow 28110$
- Codes on product:
- 3600,26085

3600,22333 3600,28110

The Gory Details - 1

The Gory Details - 2

Real World Problems -1b

$$
\begin{aligned}
& 0=5,3,2 \\
& 1=4,4,3 \\
& 2=3,3,4 \\
& 3=5,5,2 \\
& 7=4,4,3 \\
& 8=3,3,4
\end{aligned}
$$

Real World Problems -1c

- The t-distances are not always unique, even if we add a third number.
- The (even) pairs $1 / 7$ and $2 / 8$ have the same triplets so there is a need to examine widths.

Real World Problems -2

- Even if an image has only two colors (say black and white) a scanner element has finite dimensions, so it will average colors if its field covers an area with more than one color. We end up getting a big range of gray!

How do we get gray from black and white
Red mark laser scanner spots and orange an ordinary light spot. If a spot saddles two colors we get gray.

OLLI - A

Laser Scanning

- Laser light beams stay more focused than ordinary light beams, that is why they are used for bar code scanning.

Some Arithmetic

- Suppose the scanner spot covers five pixels. Then the scanner output will be a weighted average of the values of the five.

$$
\begin{gathered}
250|250| 10|10| 10 \\
250 / 16+250 / 8+5 * 10 / 8+10 / 8+10 / 16=55 \\
1 / 16+1 / 8+5 / 8+1 / 8+1 / 16=1
\end{gathered}
$$55

Oscilloscope Tracing of a Bar Code with a Laser Scanner-1

Bar Code was printed with a high quality printer so the distortion is due only to the scanner.

Oscilloscope Tracing of a Bar Code with a Laser Scanner-2

Bar code was printed with a dot matrix printer, so the distortion is due to both the printer and the scanner.

Simulated Tracing

Decoding Bar Codes is Harder than it Looks!

- Because of distortions due to the printer and the scanner, decoding bar codes is a challenging problem.
- There is an interesting trade-off: Use computing power (cheap these days) to make up for distortions caused by low quality (cheap) optics!

De-blurring

- We can decodes bar code scans if we de-blur them. But de-blurring is a mathematically ill-defined problem. (A bit like dividing by a number close to zero.)
- We need clever mathematical "tricks" that can be implemented on cheap micro-processor and run in milliseconds.

Help for Decoders

- The arrangement of bars and spaces is not arbitrary but subject to several constraints.
- Symbols contain "checksums" that make possible error detection. (Keep scanning until we get a valid checksum.)

Bar Code Types

- UPC - encodes only digits (used in supermarkets)
- Code 39 - it has 44 code words: 10 digits, 26 letters, and 8 special symbols (\$, /, ...)
- Code 128 - it has 105 code words
- Etc, etc, etc.

Code 39

- 3 of 9: three wide elements out of nine, five bars and four spaces
- Standard for the Department of Defense since 1980.
- In contrast to UPC, it has no specifications for the printed symbol.

Code 39 - samples

Bars Spaces Pattern

2010010100 上 E地TTM

